| Doo@

y 1 Vv v

A L m ' \.‘-
t. | Y ' ° V
. "| "
' p = ”77. \ "[
2 7 ,f_— . ¥ -~ | |
B R @ |
b ’ — ':Tf—“;
G«\ "\ y - ' \
" = A




Now you lock that box with your super strong
lock and send it across the country
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That is essentially the problem faced with modern
encryption:

It you make a super-cuper-strong key that is
awesome.....

..but it doesn’t help you if the person you're
sending your ‘package’ to doesn’t have a copy of
the key. Afterall, just how secure is it if you have
multiple copies of your super duper strong key
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That's exactly what happens in modern
encryption. Your browser creates a temporary
super-strong key,

The bank already has a super-strong public key.

You'll use the bank’s super-strong key to encrypt

your key and send your super-strong key to the
bank
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Your browser receives the bank’s public key.

Your browser generates a ‘session’ key

Your browser uses the bank’s public key to encrypt your session
key using RSA encryption (NASTY 1-way math function)

Ths is an example of “asymmetric encryption” since 2 keys are
used)

Your browser is now ready to send your encrypted
session key to the bank



That common key is now sent back to the
bank all safe and snug and encrypted!

* Remember, there is a (currently) unbreakable connection between
the bank’s private key and its public key.

* Because your session key was encrypted with the bank’s public key,
the bank’s computer can use the relationship between its public and
private keys to decrypt your session key. No other server on the
planet can do that,

* Now both you and your bank have a common key which is your
session key.

* From now on the bank uses RSA to encrypt all further communication
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super secret session key. All further

transport packets are encrypted using RSA to
encrypt using your session key.

Once your session with the bank is ended, your
session key is discarded so it is never used again to
communicate with a secure server!

Pretty slick huh?
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