| Doo@

y 1 Vv v

A L m ' \.‘-
t. | Y ' ° V
. "| "
' p = ”77. \ "[
2 7 ,f_— . ¥ -~ | |
B R @ |
b ’ — ':Tf—“;
G«\ "\ y - ' \
" = A

Now you lock that box with your super strong
lock and send it across the country

WAGES
. "L»

~7

lock, Your
sent the bo

st

That is essentially the problem faced with modern
encryption:

It you make a super-cuper-strong key that is
awesome.....

..but it doesn’t help you if the person you're
sending your ‘package’ to doesn’t have a copy of
the key. Afterall, just how secure is it if you have
multiple copies of your super duper strong key

%

What if you qlouf
LW

That's exactly what happens in modern
encryption. Your browser creates a temporary
super-strong key,

The bank already has a super-strong public key.

You'll use the bank’s super-strong key to encrypt

your key and send your super-strong key to the
bank

i W e o ,‘ 0 '(\'v "
ny 0 ""(3..0 ., €05 ;° AT :
: A ‘

Let’s revigw, "what happeghs in'a ‘conve s_tm)n

/(\ 2 AW (3

betweenyd’urﬁ*q&wser amds{?@t&r namiki8lserver:
"\l AN

.
— f"_.
j.b;ﬁ‘l‘t M (

Your browser receives the bank’s public key.

Your browser generates a ‘session’ key

Your browser uses the bank’s public key to encrypt your session
key using RSA encryption (NASTY 1-way math function)

Ths is an example of “asymmetric encryption” since 2 keys are
used)

Your browser is now ready to send your encrypted
session key to the bank

That common key is now sent back to the
bank all safe and snug and encrypted!

* Remember, there is a (currently) unbreakable connection between
the bank’s private key and its public key.

* Because your session key was encrypted with the bank’s public key,
the bank’s computer can use the relationship between its public and
private keys to decrypt your session key. No other server on the
planet can do that,

* Now both you and your bank have a common key which is your
session key.

* From now on the bank uses RSA to encrypt all further communication

SIHTILE YyUU dliuyg LI VAl UL T1Idve g LUYY Ul yUuUl

super secret session key. All further

transport packets are encrypted using RSA to
encrypt using your session key.

Once your session with the bank is ended, your
session key is discarded so it is never used again to
communicate with a secure server!

Pretty slick huh?

	Slide 1: Imagine that you have a lock that cannot be ‘picked’ You put a super important document in that box and lock the box
	Slide 2: Now you lock that box with your super strong lock and send it across the country
	Slide 3: Uh oh, bad news. You have the only key to the lock. Your document is safe but the person you sent the box to can’t open it.
	Slide 4: That is essentially the problem faced with modern encryption: If you make a super-duper-strong key that is awesome….. …but it doesn’t help you if the person you’re sending your ‘package’ to doesn’t have a copy of the key. Afterall, just how se
	Slide 5: What if you could put the key INSIDE the box? (whoa!) And that there was someway for the box to be opened on delivery? YIKES
	Slide 6: That’s exactly what happens in modern encryption. Your browser creates a temporary super-strong key. The bank already has a super-strong public key. You’ll use the bank’s super-strong key to encrypt your key and send your super-strong key to t
	Slide 7: Let’s review what happens in a conversation between your browser and your bank’s server: Your browser initiates a ‘conversation’ with the bank’s server….
	Slide 8: Your browser receives the bank’s public key.
	Slide 9: That common key is now sent back to the bank all safe and snug and encrypted!
	Slide 10: Since you and the bank both have a copy of your super secret session key. All further back and for the encryption of your data layers in your transport packets are encrypted using RSA to encrypt using your session key. Once your session with t

